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Introduction

My research is in Algebraic Geometry, specifically in birational geometry which is the
study of algebraic varieties up to birational equivalence i.e., having isomorphic function fields.
One of the main research programs in Algebraic Geometry is the classification of all varieties
and towards this goal two approaches developed. One being moduli spaces, that classifies up
to isomorphisms, and the other is birational geometry that classifies up to birational maps.
My research focuses on the ladder which allows a degree of flexibility because we can modify
our varieties with birational modifications into “nicer” models which we can work with and
classify.

The first big results towards birational classification were formulated by the Italian school
of algebraic geometry with the likes of Castelnuovo, Enriques, Severi and more. They showed
that a birational map between algebraic surfaces decomposed into simpler birational maps
which eventually led to a birational classification of complex algebraic surfaces. This classifi-
cation was achieved through a procedure consisting of a sequence of contractions that would
terminate, thus leaving a distinguished smooth surface birational to the original which we
called a minimal model. It was these minimal models of surfaces that were classified into
the Kodaira-Enriques classification.

The procedure of contractions became the framework of the minimal model program
with the goal of obtaining minimal models of higher dimensional algebraic varieties. Work
on the threefold case began in the 1980s and much had to be generalized. The definition of
a minimal model was expanded upon and allowed to have singularities. Additionally, more
types of birational maps had to be accounted for and understood. By the late 80s, with
efforts by Mori and many others, the threefold case was resolved and we now know that
smooth projective threefolds have a minimal model or degenerates to a Mori fiber space.

The success of the threefold case was promising but the techniques needed to be expanded
in higher dimensions. The more modern development of the higher dimensional minimal
model program approached the problem through cohomology and by way of induction as a
means to obtain all dimensions. This gave way for the existence of minimal models of smooth
projective fourfolds and many more varieties (like general type) in higher dimensions.

This setting of higher dimensional birational geometry is where I work. My research
involves studying and analyzing the properties and structure of minimal models of certain
classes of varieties. Currently, I am investigating minimal models of elliptic fibrations.

Background

A variety will be a normal Q-factorial complex projective variety. A log pair, (X,∆),
is a variety X with a Weil divisor ∆, with coefficients in Q ∩ [0, 1]. Associated to X is a
divisor called the canonical divisor, denoted KX , which corresponds to the line bundle of
holomorphic top form. In the case of a log pair (X,∆), we have an analog called the log
canonical divisor which is KX + ∆.
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Definition. Given a divisor D on X, we say that D is nef if for every curve, C ⊂ X we
have that D · C ≥ 0, where D · C is the intersection number of D and C. In the case where
canonical divisor KX is nef, we call X a minimal model. Analogously, we call (X,∆) a log
minimal model if KX + ∆ is nef.

The definition above hints at the process of the minimal model program, which is to
contract all curves that negatively intersect with KX . What’s left after these contractions,
if this process terminates, would be a minimal model. My interest is the relation between
minimal models and elliptic fibrations.

Definition. An elliptic fibration is a variety X with a morphism π : X → B such that a
general fiber of π is an elliptic curve. We say that π : X → B is an elliptic fibration with
section if there is a morphism s : B → X such that π ◦ s = idB.
A rational elliptic fibration is a rational map π : X 99K B with an open dense set U ⊂ B
such that π|π−1(U) : π−1(U)→ U is an elliptic fibration.

The two dimensional case of elliptic surface was studied by Kodaira. Minimal models of
elliptic surfaces are achieved by contracting (−1)-curves that are contained within the fibers,
resulting in a minimal model that is still an elliptic surface. In dimension 3, there are more
technicalities but we have the following result from Grassi while higher dimensions (≥ 4) is
open.

Theorem ( [4, Thm 1.1] ). Let X0 → S0 be an elliptic threefold which is not uniruled. Then
there exists a birationally equivalent fibration π̄ : X̄ → S̄, such that X̄ has at worst terminal
and S̄ log terminal singularities. Furthermore KX̄ is nef and KX̄ ≡ π̄∗(KS̄ + Λ̄), where Λ̄ is
a Q-boundary divisor. Thus the canonical bundle is a pullback of a Q-bundle on S̄.

In Grassi’s result, X̄ is a minimal model that is also an elliptic fibration, which seems
unusual because in general a contraction wouldn’t preserve a fibration structure. Part of the
proof of Grassi’s theorem utilizes a canonical bundle formula for elliptic fibrations from [3]
given below:

mKX = π∗
(
mKB +mπ∗(KX/B) +m

∑(
mi − 1

mi

Yi

))
+mE −mG (1)

Where π∗(KX/B) means the divisors corresponding π∗OB(KX/B). With enough hypotheses
and letting Λ = π∗(KX/S) +

∑
mi−1
mi

Yi, we have (S,Λ) is a log pair of which it is possible
to run the log minimal model program. Running the log minimal model program on (S,Λ)
gives the log pair (S̄, Λ̄) in the theorem above.

To maintain the fiber structure, there needs to be some control on how the minimal model
program runs on the base space and on the total space. This is achieved by a generalized
Zariski Decomposition called the Fujita-Zariski Decomposition.

Definition ( [1, Def 1.1], cf. [3, Def 1.18]). Let D be an R-Cartier divisor on X, a normal
variety. A Fujita-Zariski Decomposition of D is an expression D = P +N such that P and
N are R-Cartier with P is nef and N ≥ 0. Lastly, if f : W → X is a projective birational
morphism from a normal variety and f ∗(D) = P ′ + N ′ with P ′ nef and N ′ effective, then
P ′ ≤ f ∗(P ).
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This is not the original definition from Fujita in [3] but it is an equivalent generalized
definition from Birkar given in [1]. Grassi used this decomposition to explicitly show that
the appropriate divisors are contracted when running the relative minimal model program,
thus resulting in the equation KX̄ ≡ π̄∗(KS̄ + Λ̄).

Results

Generalizing towards higher dimensions is difficult partially because there are psuedo-
effective divisors in higher dimensions that may not have a Fujita-Zarsiki decompositions.
But working birationally we have the following result from Birkar:

Theorem ( [1, Thm 1.5]). Assume the log minimal model program for Q-factorial divisorial
log terminal pairs in dimension n − 1. Let (X,∆) be log canonical of dimension n, then
KX + ∆ birationally has a Fujita-Zariski Decomposition if and only if (X,∆) has a log
minimal model.

For an elliptic fourfold, π : X → B, we have that B is a threefold base with an associated
divisor ∆ coming from the canonical bundle formula making (B,∆) log terminal. The case
of the log minimal model program for log canonical threefolds have been established thus
for the log terminal pair (B,∆), we have that KB + ∆ birationally has a Fujita-Zariski
decomposition. This means there is a sequence of blow ups g : B̃ → B such that g∗(KB +∆)
has a Fujita-Zariski decomposition. This now brings into question how does this affect the
canonical bundle formula of X and it’s relation to g∗(KB + ∆).

In [5], an analysis partially addressing this question was done for Weierstrass models,
which is an elliptic fibration that locally looks like an affine Weierstrass equation. We can
pull back a Weierstrass model on B to a Weierstrass model on B̃ and so it is possible to
compare the log canonical divisors of (B,∆) to (B̃, ∆̃) in relation to the canonical bundle
formula. These were the tools I used to show that with enough reasonable hypotheses on a
Weierstrass model, π : X → B, KX birationally has a Fujita-Zariski decomposition.

With KX birationally having a Fujita-Zariski decomposition, I showed that that running
the minimal model program would contract the appropriate divisors in this decomposition
thus getting rid of the “negative” terms in the canonical bundle formula. The whole process
gives a commutative diagram:

X̃

X X̄

(B̃, ∆̃)

(B,∆) (B̄, ∆̄)

g̃

π̃

ε

µ

π π̄

g h

ψ

Where we have that following:
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• X is a Weierstrass model over B and ∆ is the divisor associated to π∗OX(KX/B)

• (B̄, ∆̄) is the log minimal model of (B,∆) and B̃ is a common log resolution where
g∗(KB + ∆) has a Fujita-Zariski Decomposition.

• X̃ is obtained by taking the fiber product of X and B̃ and then resolving the singu-
larities. So π̃ : X̃ → B̃ is a elliptic fibration between smooth projective varieties.

• X̄ is obtained by running the minimal model program on X̃. These contractions result
in the equation KX̄ ≡ π̄∗(KB̄ + ∆̄).

We have that the exceptional divisors of µ are exactly the divisors over the exceptional
locus of h. This shows that outside of this exceptional set, the fibration structure is preserved
by µ. The result is the following theorems and corollaries:

Theorem 1. Let π : X → B be a Weierstrass model, ∆ the divisor associated π∗OB(KX/B)
such that (B,∆) is a log terminal threefold with a log minimal model (B̄, ∆̄). Then there
exists a birationally equivalent rational elliptic fibration π̄ : X̄ 99K B̄, such that X̄ is a
minimal model of X and KX̄ ≡ π̄∗(KB̄ + ∆̄).

Corollary 2. With the assumptions above, π̄ is defined in codimension 1 and there exists a
non-empty open U ⊂ B̄ such that codim(B̄ \U) ≥ 2 and π̄ is a flat elliptic fibration over U .

Corollary 3. With the assumptions above, any minimal model of X with at worst terminal
singularities is a rational elliptic fibration over B̄

Theorem 4. With the assumptions above, the canonical model of X̄ is isomorphic to the
log canonical model of (B̄, ∆̄). Equivalently, the canonical ring of X̄ is isomorphic to the log
canonical ring of (B̄, ∆̄).

Future Directions

Currently, I am further investigating the birational geometry of Weierstrass models. The
above theorem establishes a relation between minimal models of a Weierstrass model and it’s
base but how the minimal model program is affecting the fibration structure is still unknown.
A few question I want to answer is: Is it possible to realize the map π̄ as a morphism instead
of a rational map? How does the birational properties of a Weierstrass Model interact with
the minimal model program? What is the behavior of an elliptic fibration after a flip or a
flop on the base? Are there conditions to obtain a minimal model that is equidimensional
over the base?

Elliptic fibrations with section are very relevant in Physics, especially in F-Theory with
elliptically fibered Calabi-Yau varieties. Some recent work in the birational geometry of low
dimensional elliptically fibered Calabi-Yau varieties can be seen in [2]. Lastly, while the case
with section is very interesting, it is also worthwhile to consider the case of elliptic fibrations
without rational section (i.e., is not birational to a Weierstrass model) as these involve fibers
with multiplicites and would require a more intrinsic understanding of the fiber structure.

Moving forward, I want to study the birational geometry and minimal models of algebraic
fiber spaces, specifically with general fibers having Kodaira dimension 0. Fibrations with
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general fibers having trivial canonical divisors, like elliptic fibrations, are a special case of
this. These spaces are relevant to the minimal model program through the Iitaka fibration
over canonical models which is one of the outputs of the minimal model program (the others
being Mori fiber spaces and general type varieties). These algebraic fiber spaces factors into
the Iitaka fibration setting up a relation between the canonical models of the total space
with the base space and potentially relating minimal models of the total space with that
of the base space. Grassi’s theorem for elliptic threefolds and my partial generalization for
elliptic fourfolds are evidence of such a relation.

Questions I want to answer towards this direction are: Is is possible to generalize these
results to higher dimensions and higher dimensional fibers? For instance, does such a theorem
hold forK3-fibrations over surfaces? Can we further understand the canonical divisor of these
algebraic fiber spaces, possibly through their singular fibers and other variants of the Zariski
decompositions? Can we utilize these techniques to obtain minimal models of algebraic fiber
spaces in higher dimensions?
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